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The Z4-equivariant planar vector field 2 = ez + ¢**z|z|> + bz> models the
dynamics near a closed orbit losing its stability in 1:4 resonance. It is known
that there are at least 48 regions in the (b, p)-plane of constants, corresponding
to equivalence classes of unfoldings in the parameter «. It is a conjecture by
Arnol'd that there are not any more such regions.

We propose to disregard the distinction, typical for models from bifurcation
theory and many applications, between unfolding parameters and constants de-
termining the nonlinear terms. In this spirit we present the bifurcation set for
the above model in (b, p, @)-space, which represents all known information in a
condensed way. This approach leads to new support for the above conjecture,
notably through the study of bifurcations at infinity of the phase space and the
use of numerical techniques.

1. THE PERIODICALLY FORCED OSCILLATOR

This paper is derived from my Ph.D.-thesis [18], which contains a more com-
plete treatment of the problem discussed here. Further details can be found
there and in [16], [17], [19]. As general references for the concepts of dynamical
systems and bifurcation theory see [2], [3], [11], [13].

Consider the up-and-down motion of the front wheel of a motor bike riding
on an evenly corrugated road. The wheel is suspended by a damped nonlinear
spring and is excited as the bike rides along. (All effects of other parts of the
bike are neglected.) There are two parameters in the system: the amplitude
and the frequency of the excitation, given by the ‘badness’ of the road and the
speed of the motor bike, respectively.
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If the road is not too bad the wheel follows its shape and we observe a pe-
riodic motion of the wheel in the external frequency of the corrugation. As the
road gets worse, typically an additional internal oscillation with small ampli-
tude appears on top of the original one: the wheel starts bouncing a little. The
original periodic motion is now unstable, and is consequently not observed. For
certain speeds the two frequencies are in resonance, meaning that their ratio is
a rational number p/q. Important resonances occur for ¢ = 1,2, 3,4. Close to
such a resonance the wheel may exhibit more complicated motions, which can
have catastrophic effects on both rider and bike. We are concerned with the
most complicated and the only unsolved case of 1:4 resonance, when the ex-
ternal frequency is exactly a quarter of the internal frequency as the originally
stable periodic motion disappears.

The front wheel is an admittedly not perfect example of a periodically forced
oscillator. Concrete examples are the forced Van der Pol equation and the
damped forced pendulum. By setting z = « +i4& € C and assuming that the
forcing has the constant frequency one, the forced oscillator can be written as
the vector field

= fu”g(z,f,t)
i =1 (1)
on the phase space C x (R/Z).

By performing a suitable change of coordinates, we may assume that {z =
0} is a periodic orbit, independently of the parameters p and 3. The ques-
tion is what happens as this orbit loses its stability, which can be studied
by means of the Poincaré map P, 3. In the present situation this is simply
the stroboscopic map of the forcing period (which was set to one), that is,
(Pus(2),1) = ¢, 5(2,0), where ¢!, 5 is the flow of (1). We may assume that
DP, 5(0) has eigenvalues e**27%  so that the loss of stability of the origin
occurs for g = 0. Under the genericity condition 8 # p/q for ¢ = 1,2,3,4 an
invariant circle bifurcates from the origin for 4 = 0 in a Hopf bifurcation for
maps, also called a Neimark-Sacker bifurcation. The question is what happens
if the genericity condition 8 # p/q for ¢ = 1,2,3,4 is violated, in which case
one speaks of a strong resonance.

2. A MODEL SYSTEM

If 4 =0 and 8 = p/q, where p and ¢ are relatively prime, system (1) undergoes
a Hopf bifurcation with p:q resonance and the linear part DP, ,/,(0) is the
rotation over the angle 2w p/q. The key tool in this situation is a classical
normal form theorem that reduces the problem to the study of a planar vector
field by averaging away the time-variable ¢ in (1); compare [8].

THEOREM 1 ([1]; [22])

In a neighborhood of (z,u, 8) = (0,0,p/q) the map P, 5 can be approzimated up
to any prescribed order by the time-one map of a Zg-equivariant planar vector
field X, 5, composed with J,,;q := DPy ,/,(0), the rotation over 2mp/q.
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This theorem reduces the p:q resonance problem to finding all versal unfold-
ings of codimension two of Z j-equivariant vector fields. An unfolding describes
all possible dynamics near the singularity in question with the amount of pa-
rameters given by the codimension. It is called versal if it is the most general
unfolding in some sense; for the rather technical definitions see [1], [18]. Except
for ¢ = 4, these versal unfoldings are known; relevant references are [1], [2], [3],
[6], [7], [9], [15], [22]. As was mentioned earlier, for ¢ > 5 an invariant circle is
born in the Hopf bifurcation just like in the absence of resonance; one speaks
of weak resonances in this case. The case of 1:4 resonance marks the transition
between the weak and the strong resonances. For Z4-equivariant planar vector
fields there is a well-known conjecture.

CONJECTURE 2. [1]
All versal unfoldings of codimension two of a Z4-equivariant planar vector field
are contained in the model equation

s =ez+ Az|z|* + B3, (2)
where ¢, A, B € C.

As part of this conjecture Arnol’d found 48 regions in (A, B)-space of unfoldings
in the parameter e. We will see later that this gives a total of eleven differ-
ent unfoldings if one takes into account some additional symmetry of phase
portraits. It has not been proved that there cannot be other than the known
unfoldings and that they are versal. It is the purpose of the approach presented
here to give arguments in favour of Conjecture 2. Note that the two nonlinear
terms in (2) are of the same order, so that their relative influence is determined
exclusively by the coefficients A and B. This is the reason why this case is the
most difficult one.

System (2) has a four-dimensional (A, B)-space of constants and a two-
dimensional e-plane of the unfolding parameter. By scaling the phase plane
one can see that two real constants are enough to determine the nonlinearity.
Furthermore, all bifurcation curves in the e-plane are straight lines from the
origin, so that considering only what happens for values on the unit circle
€ = €' in the e-plane still gives all information about an unfolding. We choose
to work with the reduced equation

F=e 2+ ez |22 + 073, (3)

where b € Rt and a € (—,7]. Due to reflectional symmetries in phase space,
it is sufficient to consider the case ¢ € [r, 37/2]. In the literature the reader
will find the equivalent system Z = ei®z + Az |z|? + 2°. We use (3) because
the interesting behavior occurs in a compact piece of parameter space; see [17],
[18] for a geometrical interpretation of the two reductions.

The bifurcation sequence for fixed (b,p) is the sequence of topologically
different phase portraits as a varies. Two bifurcation sequences are equivalent if
the same types of bifurcations occur in the same order and the respective phase
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FIGURE 1. The (b, p)-plane of (3) with the equivalence classes of different
bifurcation sequences (roman numerals).

portraits are topologically equivalent. Clearly, two unfoldings are equivalent if
the corresponding bifurcation sequences are. The problem can now be stated
as follows.

1. Find all equivalence classes of bifurcation sequences in the (b, ¢)-plane.
2. Show that they represent versal unfoldings.

This was studied in [2], [5], [21] (for the equivalent model), which lead to the
picture of the (b,p)-plane as illustrated in Figure 1. The list of all known
bifurcation sequence can be found in [16], [18].

3. THE EXTENDED PARAMETER SPACE

Because we believe that our approach can be useful in other situations, we
present it in a general setting. Consider a polynomial model system of fized
degree

& = F(z; )\ ), (4)
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where x € R™ is a phase variable, A € R™ is an unfolding parameter and
c € R is a constant. One can think of F as a polynomial model or as the
truncation of a Taylor series in normal form. The general question is: what is
the behavior of (4) as A is varied, once ¢ has been fixed to a non-exceptional, or
generic value? In other words, one wants to know the partition of c-space into
regions of equivalent unfoldings in A. The values where c is exceptional are of
particular importance as they form the boundaries between different regions in
c-space.

The clear distinction between the unfolding parameter A and the constant
¢ is quite typical. We propose to give up this distinction and to study the
bifurcation set in the extended parameter (c,\)-space. The bifurcation set
divides this space into regions of topologically equivalent phase portraits, an
easier notion than the equivalence of unfoldings. By projection in the direction
of A the information on the equivalence classes of unfoldings in c-space can be
retrieved from the bifurcation set. By “drilling” in the direction of A for a fixed
¢ the unfolding can be found.

Also in the context of applying numerical techniques it is very natural to
consider the extended parameter space. Drawing phase portraits numerically
allows one to get an idea of how this space is structured. Furthermore, the
important idea of following an object in phase space by continuation under the
variation of parameters typically gives a new object in the product of the phase
space with the extended parameter space; see Section 6 for more on numerical
methods.

The boundaries in c-space are either projections of bifurcations of codimen-
sion (m + 1) or correspond to bifurcations at infinity of the phase space. The
fact that bifurcations at infinity become important may be somewhat surpris-
ing. However, typically there are boundaries in c-space, crossing which leads to
the escape of equilibria or limit cycles to infinity in phase space. This can be
described by bifurcations at infinity, that is, by bifurcations at the boundary
of the phase space R™ of (4). The study of bifurcations at infinity can be very
useful for finding all phase portraits. (Recall that (4) is of fixed degree. To
find all phase portraits we do not need to add higher order terms.) We note
here that often only those bifurcations at infinity are of importance that lead
to a topological change of phase portraits in the phase space R™.

The general program for finding the bifurcation set of (4) is the following.
First one calculates all local hypersurfaces for which one knows parametriza-
tions. These may include bifurcations at infinity. Then one uses topological
arguments and numerical continuation to find the monlocal hypersurfaces for
which no parametrizations are known, such as for example those correspond-
ing to saddle connections. The bifurcation set represents all information in
a condensed form. Unfortunately, visualizing (¢, A)-space has its limits if the
dimensions m and [ are too big.
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| Surface | Characterizing property |
©®1 © First and second Hopf bifurcation at 0

S1 So First and second saddle-node bifurcation
Ty Hopf bifurcation at secondary equilibria
hee Pitchfork bifurcation at oo
S Saddle-node bifurcation at co
(Ol Hopf bifurcation at oo
Y Homoclinic loop at secondary equilibria
0, Oy First and second square connection
O Clover connection
© Saddle-node of limit cycles
| Curve | Characterizing property |

®S Hopf bifurcation at 0 coincides with
second saddle-node bifurcation

BT Bogdanov-Takens bifurcation

QT Clover connection with zero trace
S, Clover connection coincides with

first saddle-node bifurcation

0S; OSs | Square connection coincides with

first or second saddle-node bifurcation

TABLE 1. Symbols for surfaces of codimension-one bifurcations and for curves
of codimension-two bifurcations.

4. THE BIFURCATION SET

We now apply the ideas from the last section to the model for 1:4 resonance (2).
The dimensions are ideal since we are dealing with a three-dimensional extended
(b, ¢, a)-space. Furthermore, the phase space is two-dimensional which largely
facilitates the study of bifurcations at infinity. We present all known surfaces of
codimension-one bifurcations in the bifurcation set, which divide (b, , @)-space
into regions of topologically equivalent phase portraits. For details and proofs
we refer to [17], [18]. The symbols we use to label the surfaces can be found in
Table 1. We begin by presenting the local surfaces in the bifurcation set.

LEMMA 3.  The following local surfaces are in the bifurcation set.

(a) Two planes ©1 and ©9 of Hopf bifurcations at 0 given by a = +m /2.

(b) Two surfaces S; and So of saddle-node bifurcations given by o = p — 7 F
arcsin b, where 0 < b < 1.

(¢) The surface Ty of Hopf bifurcations of secondary equilibria, where the trace
s zero at the nodes, given by

b%(1 —bv?) 3T

sinp — /b? — cos? ¢
, wh 0 T << <.
2cosp where T + arccos 32 1 1 () 5

tana =
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FIGURE 2. Possible saddle connections of codimension one, called a square
connection (left) and a clover connection (right), respectively.

(d) The plane > of pitchfork bifurcations at co given by b= 1.
(e) The surface ©° of Hopf bifurcations at co given by ¢ = 37/2, where b €
[0,1).

The local surfaces form the skeleton of the bifurcation set. They intersect each
other and also the yet unknown nonlocal surfaces in lifts of the boundary curves
in the (b, p)-plane of Figure 1. The nonlocal surfaces and their intersection
curves with other surfaces involve saddle connections of square and clover type
as depicted in Figure 2.

LEMMA 4.  On the local surfaces one finds the following curves of codimension-
two bifurcations. (We use the same notation for the lifted curves as for their
projections.)

(a) The curve ®©S, given by ¢ = m 4 arccosb, a = /2, where Sz and ©®y
intersect.

(b) The curve BT of Bogdanov—Takens bifurcations, given by

@ = T + arccos 4/ %ﬁf),a = p —m — arcsin b, where S; meets T .

(¢) The system is Hamiltonian along the intersections of ®1 and of ®© with the
plane {p = 37/2}, given by ¢ = 31/2,a = £7/2.

(d) The curves 00S; on S1 and OSy on So, where there is a square connection
at the moment of the respective saddle-node bifurcation.

(e) The curve (3S1 on S, where there is a clover connection at the moment of
the first saddle-node bifurcation.

(f) The curve (3T lies on a surface where the trace is zero at the saddles, which
s not part of the bifurcation set, but can be parametrized like T .
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All nonlocal surfaces were shown to bifurcate from Hamiltonian lines in [21].
This information was important for finding all unfoldings. We use this together
with topological arguments to find the global structure of the nonlocal surfaces,
where we assume that the known surfaces intersect only in the known curves of
codimension-two bifurcations. This assumption can be checked by numerical
techniques; see Section 6.

THEOREM 5.  The following nonlocal surfaces are in the bifurcation set.

(a) Two surfaces Oy and O of square connections. The upper surface Ta
extends from the curve 0Sy on Sy to the Hamiltonian line ¢ = 37/2, o =
w/2,b € [0,1]. The lower surface Oy extends from the Hamiltonian line ¢ =
w/2, a« = —7/2 to the curve OS; on Sy for b <1, and to the Hamiltonian
line p =37/2, a = —7/2 for b > 1.

(b) The surface O3 of clover connections, extending from the curve



